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Appendix G:  Health-Based Cost-Effectiveness of Reductions in Ambient PM2.5 
Associated with Illustrative PM NAAQS Attainment Strategies 

G.1 Summary 

Health-based cost-effectiveness analysis (CEA) and cost-utility analysis (CUA) have been used 
to analyze numerous health interventions but have not been widely adopted as tools to analyze 
environmental policies.  The Office of Management and Budget (OMB) recently issued Circular 
A-4 guidance on regulatory analyses, requiring federal agencies to “prepare a CEA for all major 
rulemakings for which the primary benefits are improved public health and safety to the extent 
that a valid effectiveness measure can be developed to represent expected health and safety 
outcomes.”  Environmental quality improvements may have multiple health and ecological 
benefits, making application of CEA more difficult and less straightforward.  For the PM 
NAAQS, CEA may provide a useful framework for evaluation:  non-health benefits are 
substantial, but the majority of quantified benefits come from health effects.  Therefore, EPA is 
including in the PM NAAQS RIA a preliminary and experimental application of one type of 
CEA—a modified quality-adjusted life-years (QALYs) approach. 

QALYs were developed to evaluate the effectiveness of individual medical treatments, and EPA 
is still evaluating the appropriate methods for CEA for environmental regulations.  Agency 
concerns with the standard QALY methodology include the treatment of people with fewer years 
to live (the elderly); fairness to people with preexisting conditions that may lead to reduced life 
expectancy and reduced quality of life; and how the analysis should best account for non-health 
benefits, such as improved visibility. 

The Institute of Medicine (a member institution of the National Academies of Science) 
established the Committee to Evaluate Measures of Health Benefits for Environmental, Health, 
and Safety Regulation to assess the scientific validity, ethical implications, and practical utility 
of a wide range of effectiveness measures used or proposed in CEA.  This committee prepared a 
report titled “Valuing Health for Regulatory Cost-Effectiveness Analysis” which concluded that 
CEA is a useful tool for assessing regulatory interventions to promote human health and safety, 
although not sufficient for informed regulatory decisions (Miller, Robinson, and Lawrence, 
2006).  They emphasized the need for additional data and methodological improvements for 
CEA analyses, and urged greater consistency in the reporting of assumptions, data elements, and 
analytic methods.  They also provided a number of recommendations for the conduct of 
regulatory CEA analyses.  EPA is evaluating these recommendations and will determine a 
response for upcoming analyses.  For this analysis, we use the same approach that was applied in 
the CEA that accompanied the RIA for the Clean Air Interstate Rule. 

The methodology presented in this appendix is not intended to stand as precedent either for 
future air pollution regulations or for other EPA regulations where it may be inappropriate.  It is 
intended solely to demonstrate one particular approach to estimating the cost-effectiveness of 
reductions in ambient PM2.5 in achieving improvements in public health.  Reductions in ambient 
PM2.5 likely will have other health and environmental benefits that will not be reflected in this 
CEA.  Other EPA regulations affecting other aspects of environmental quality and public health 
may require additional data and models that may preclude the development of similar health-
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based CEAs.  A number of additional methodological issues must be considered when 
conducting CEAs for environmental policies, including treatment of nonhealth effects, 
aggregation of acute and long-term health impacts, and aggregation of life extensions and 
quality-of-life improvements in different populations.  The appropriateness of health-based CEA 
should be evaluated on a case-by-case basis subject to the availability of appropriate data and 
models, among other factors. 

Attainment of the revised PM NAAQS is expected to result in substantial reductions in potential 
population exposure to ambient concentrations of PM by 2020.  The benefit-cost analysis 
presented in the RIA shows that attainment of the revised 15/35 suite of standards achieves 
substantial health benefits whose monetized value far exceeds costs (net benefits are over $10 
billion in 2020).  Despite the risk of oversimplifying benefits, cautiously-interpreted cost-
effectiveness calculations may provide further evidence of whether the costs associated with 
attainment strategies for the PM NAAQS are a reasonable health investment for the nation. 

This analysis provides estimates of commonly used health-based effectiveness measures, 
including lives saved, life years saved (from reductions in mortality risk), and QALYs saved 
(from reductions in morbidity risk) associated with the reduction of ambient PM2.5 due to 
illustrative attainment strategies for the revised standards and a more stringent annual standard.  
In addition, we use an alternative aggregate effectiveness metric, Morbidity Inclusive Life Years 
(MILY) to address some of the concerns about aggregation of life extension and quality-of-life 
impacts.  It represents the sum of life years gained due to reductions in premature mortality and 
the QALY gained due to reductions in chronic morbidity.  This measure may be preferred to 
existing QALY aggregation approaches because it does not devalue life extensions in individuals 
with preexisting illnesses that reduce quality of life.  However, the MILY measure is still based 
on life years and thus still inherently gives more weight to interventions that reduce mortality 
and morbidity impacts for younger populations with higher remaining life expectancy.  This 
analysis focuses on life extensions and improvements in quality of life through reductions in two 
diseases with chronic impacts:  chronic bronchitis (CB) and nonfatal acute myocardial 
infarctions.  Monte Carlo simulations are used to propagate uncertainty in several analytical 
parameters and characterize the distribution of estimated impacts.  While the benefit-cost 
analysis presented in the RIA characterizes mortality impacts using a number of different sources 
for the PM mortality effect estimate, for this analysis, we focus on the mortality results generated 
using the effect estimate derived from the Pope et al. (2002) study. 

Presented in three different metrics, the analysis suggests the following: 

• In 2020 the illustrative attainment strategy for the revised 15/35 standards will result in: 

– 2,500 (95% CI:  1,000 – 4,100) premature deaths avoided, or 

– 26,000 (95% CI:  18,000 – 34,000) life years gained (discounted at 3 percent), or 

– 43,000 (95% CI:  28,000 – 62,000) MILYs gained (discounted at 3 percent). 

• In 2020, the illustrative attainment strategy for the more stringent 14/35 standards will 
result in: 

– 4,400 (95% CI:  1,700 – 7,100) premature deaths avoided, or 
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– 45,000 (95% CI:  32,000 – 59,000) life years gained (discounted at 3 percent), or 

– 75,000 (95% CI:  48,000 – 107,000) MILYs gained (discounted at 3 percent). 

• Using a 7 percent discount rate, mean discounted life years gained are 16,000 for the 
revised 15/35 standards and 29,000 for the alternative 14/35 standards; mean MILYs 
gained are 28,000 for the 15/35 standards and 49,000 for the alternative 14/35 standards.  
(The estimates of premature deaths avoided are not affected by the discount rate.) 

• The associated reductions in CB and nonfatal acute myocardial infarctions will reduce 
medical costs by approximately $680 million for the 15/35 scenario and $1,200 million 
for the 14/35 scenario based on a 3 percent discount rate, or $520 million for the 15/35 
scenario and $940 million for the 14/35 scenario based on a 7 percent discount rate. 

• Other health and visibility benefits are valued at $530 million for the 15/35 scenario and 
$1,100 million for the 14/35 scenario. 

Direct private compliance costs for the 15/35 attainment strategy, including the extrapolated 
costs of full attainment in California and Salt Lake City are $5.4 billion, incremental to 
attainment of the current 15/65 standards in 2020.  Full attainment costs for the 14/35 attainment 
strategy are $7.0 billion incremental to attainment of the current 15/65 standards.  Based on these 
costs, the incremental cost effectiveness (net of cost of illness and other health and visibility 
benefits) of the 15/35 attainment strategy relative to attainment of the current standards is 
$98,000/MILY using a 3 percent discount rate and $160,000/MILY using a 7 percent discount 
rate.  Incremental cost effectiveness of the 14/35 attainment strategy relative to attainment of the 
current standards is $60,000/MILY using a 3 percent discount rate and $100,000/MILY using a 7 
percent discount rate.  The incremental cost effectiveness of the attainment strategy for the 
alternative 14/35 standards relative to the attainment strategy for the revised 15/35 standards is 
$17,000/MILY using a 3 percent discount rate and $29,000 using a 7 percent discount rate.  The 
relatively smaller incremental cost per MILY associated with the attainment strategy for the 
alternative 14/35 standards is primarily due to the regional control strategies implemented in the 
Eastern U.S. (which affect a much larger population), and the fact that much of the cost of both 
the 15/35 and 14/35 attainment strategies is due to the high estimates of costs of attaining the 
daily standard of 35 µg/m3 in California.  See Chapters 4 and 5 of this RIA for more discussion 
of the control strategies and cost estimates. 

G.2 Introduction 

Analyses of environmental regulations have typically used benefit-cost analysis to characterize 
impacts on social welfare.  Benefit-cost analyses allow for aggregation of the benefits of 
reducing mortality risks with other monetized benefits of reducing air pollution, including acute 
and chronic morbidity, and nonhealth benefits such as improved visibility.  One of the great 
advantages of the benefit-cost paradigm is that a wide range of quantifiable benefits can be 
compared to costs to evaluate the economic efficiency of particular actions.  However, 
alternative paradigms such as CEA and CUA analyses may also provide useful insights.  CEA 
involves estimation of the costs per unit of benefit (e.g., lives or life years saved).  CUA is a 
special type of CEA using preference-based measures of effectiveness, such as QALYs. 
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CEA and CUA are most useful for comparing programs that have similar goals, for example, 
alternative medical interventions or treatments that can save a life or cure a disease.  They are 
less readily applicable to programs with multiple categories of benefits, such as those reducing 
ambient air pollution, because the cost-effectiveness calculation is based on the quantity of a 
single benefit category.  In other words, we cannot readily convert improvements in nonhealth 
benefits such as visibility to a health metric such as life years saved.  For these reasons, 
environmental economists prefer to present results in terms of monetary benefits and net 
benefits. 

However, QALY-based CUA has been widely adopted within the health economics literature 
(Neumann, 2003; Gold et al., 1996) and in the analysis of public health interventions (US FDA, 
2004).  QALY-based analyses have not been as accepted in the environmental economics 
literature because of concerns about the theoretical consistency of QALYs with individual 
preferences (Hammitt, 2002), treatment of nonhuman health benefits, and a number of other 
factors (Freeman, Hammitt, and De Civita, 2002).  For environmental regulations, benefit-cost 
analysis has been the preferred method of choosing among regulatory alternatives in terms of 
economic efficiency.  Recently several academic analyses have proposed the use of life years-
based benefit-cost or CEAs of air pollution regulations (Cohen, Hammitt, and Levy, 2003; Coyle 
et al., 2003; Rabl, 2003; Carrothers, Evans, and Graham, 2002).  In addition, the World Health 
Organization has adopted the use of disability-adjusted life years, a variant on QALYs, to assess 
the global burden of disease due to different causes, including environmental pollution (Murray 
et al., 2002; de Hollander et al., 1999). 

Recently, the U.S. OMB (Circular A-4, 2003) issued new guidance requiring federal agencies to 
provide both CEA and benefit-cost analyses for major regulations.  The OMB Circular A-4 
directs agencies to “prepare a CEA for all major rulemakings for which the primary benefits are 
improved public health and safety to the extent that a valid effectiveness measure can be 
developed to represent expected health and safety outcomes.”  We are including a CEA for the 
illustrative PM NAAQS attainment strategies to illustrate one potential approach for conducting 
a CEA.  EPA is still evaluating the appropriate methods for CEA for environmental regulations 
with multiple outcomes. 

The methodology presented in this appendix is not intended to stand as precedent either for 
future air pollution regulations or for other EPA regulations governing water, solid waste, or 
other regulatory objectives.  It is intended solely to demonstrate one particular approach to 
estimating the effectiveness of reductions in ambient PM2.5 in achieving improvements in public 
health.  This analysis focuses on effectiveness measured by improvements in life expectancy and 
reductions in the incidence of two diseases with chronic impacts on quality of life:  CB and 
nonfatal acute myocardial infarctions.  Other EPA regulations affecting other aspects of 
environmental quality and public health may require additional data and models that may 
preclude the development of similar QALY-based analyses.  The appropriateness of QALY-
based CEA should be evaluated on a case-by-case basis subject to the availability of appropriate 
data and models. 

Preparation of a CEA requires identification of an appropriate measure of rule effectiveness.  
Given the significant impact of reductions in ambient PM2.5 on reductions in the risk of 
mortality, lives saved is an important measure of effectiveness.  However, one of the ongoing 
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controversies in health impact assessment regards whether reductions in mortality risk should be 
reported and valued in terms of statistical lives saved or in terms of statistical life years saved.  
Life years saved measures differentiate among premature mortalities based on the remaining life 
expectancy of affected individuals.  In general, under the life years approach, older individuals 
will gain fewer life years than younger individuals for the same reduction in mortality risk during 
a given time period, making interventions that benefit older individuals seem less beneficial 
relative to similar interventions benefiting younger individuals.  A further complication in the 
debate is whether to apply quality adjustments to life years lost.  Under this approach, 
individuals with preexisting health conditions would have fewer QALYs lost relative to healthy 
individuals for the same loss in life expectancy, making interventions that primarily benefit 
individuals with poor health seem less beneficial to similar interventions affecting primarily 
healthy individuals. 

In addition to substantial mortality risk reduction benefits, strategies for attaining the revised PM 
NAAQS will also result in significant reductions in chronic and acute morbidity.  Several 
approaches have been developed to incorporate both morbidity and mortality into a single 
effectiveness metric.  The most common of these is the QALY approach, which expresses all 
morbidity and mortality impacts in terms of quality of life multiplied by the duration of time with 
that quality of life.  The QALY approach has some appealing characteristics.  For example, it can 
account for morbidity effects as well as losses in life expectancy without requiring the 
assignment of dollar values to calculate total benefits.  By doing so it provides an alternative 
framework to benefit-cost analysis for aggregating quantitative measures of health impacts. 

While used extensively in the economic evaluation of medical interventions (Gold et al., 1996), 
QALYs have not been widely used in evaluating environmental health regulations.  A number of 
specific issues arise with the use of QALYs in evaluating environmental programs that affect a 
broad and heterogeneous population and that provide both health and nonhealth benefits.  The 
U.S. Public Health Service report on cost-effectiveness in health and medicine notes the 
following: 

 For decisions that involve greater diversity in interventions and the people to whom 
they apply, cost-effectiveness ratios continue to provide essential information, but 
that information must, to a greater degree, be evaluated in light of circumstances and 
values that cannot be included in the analysis.  Individuals in the population will 
differ widely in their health and disability before the intervention, or in age, wealth, 
or other characteristics, raising questions about how society values gains for the more 
and less health, for young and old, for rich and poor, and so on.  The assumption that 
all QALYs are of equal value is less likely to be reasonable in this context.  (Gold et 
al., 1996, p. 11) 

Use of QALYs as a measure of effectiveness for environmental regulations is still developing, 
and while this analysis provides one framework for using QALYs to evaluate environmental 
regulations, there are clearly many issues, both scientific and ethical, that need to be addressed 
with additional research.  The Institute of Medicine panel evaluating QALYs and other 
effectiveness measures prepared a report titled “Valuing Health for Regulatory Cost-
Effectiveness Analysis” which concluded that “the QALY is the best measure at present on 
which to standardize Health Adjusted Life Year estimation because of its widespread use, 
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flexibility, and relative simplicity” (Miller, Robinson, and Lawrence, 2006).  EPA is evaluating 
this recommendation and will determine a response for upcoming analyses.  For this analysis, for 
reasons discussed in the text, we use the same MILY approach that was applied in the CEA that 
accompanied the RIA for the Clean Air Interstate Rule. 

This appendix presents cost-effectiveness methodologies for evaluating programs such as 
attainment strategies for the revised PM NAAQS that are intended to reduce ambient PM2.5 
starting from the standard QALY literature and seeking a parallel structure to benefit-cost 
analysis in the use of air quality and health inputs (see Hubbell [2004a] for a discussion of some 
of the issues that arise in comparing QALY and benefit-cost frameworks in analyzing air 
pollution impacts).  For the purposes of this analysis, we calculate effectiveness using several 
different metrics, including lives prolonged, life years gained, and modified QALYs.  For the life 
years and QALY-type approaches, we use life table methods to calculate the change in life 
expectancy expected to result from changes in mortality risk from PM.  We use existing 
estimates of preferences for different health states to obtain QALY weights for morbidity 
endpoints associated with air pollution.  In general, consistent with the Gold et al. (1996) 
recommendations, we use weights obtained from a societal perspective when available.  We 
explore several different sources for these weights to characterize some of the potential 
uncertainty in the QALY estimates.  We follow many of the principles of the reference case 
analysis as defined in Gold et al. (1996), although in some cases we depart from the reference 
case approach when data limitations require us to do so (primarily in the selection of quality-of-
life weights for morbidity endpoints).  We also depart from the reference case (and the 
recommendations of the IOM report) in the method of combining life expectancy and quality-of-
life gains. 

Results in most tables are presented only at a discount rate of 3 percent, rather than at both 3 
percent and 7 percent as recommended in EPA and OMB guidance.  This is strictly for ease of 
presentation.  Aggregate results at 7 percent are presented in the summary, and the impact of 
using a 7 percent discount rate instead of 3 percent rate is summarized in a sensitivity analysis. 

Monte Carlo simulation methods are used to propagate uncertainty in several of the model 
parameters throughout the analysis.  We characterize overall uncertainty in the results with 95 
percent confidence intervals based on the Monte Carlo simulations.  In addition, we examine the 
impacts of changing key parameters, such as the discount rate, on the effectiveness measures and 
the cost-effectiveness metrics. 

The remainder of this appendix provides an overview of the key issues involved in life year- and 
QALY-based approaches for evaluating the health impacts of air pollution regulations, provides 
detailed discussions of the steps required for each type of effectiveness calculation, and presents 
the CEA for the PM NAAQS illustrative attainment strategies.  Section G.3 introduces the 
various effectiveness measures and discusses some of the assumptions required for each.  Section 
G.4 details the methodology used to calculate changes in life years and quality adjustments for 
mortality and morbidity endpoints.  Section G.5 provides the results for the illustrative 
attainment strategies for the revised and more stringent alternative PM NAAQS and discusses 
their implications for cost-effectiveness of these attainment strategies. 
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G.3 Effectiveness Measures 

Three major classes of benefits are associated with reductions in air pollution:  mortality, 
morbidity, and nonhealth (welfare).  For the purposes of benefit-cost analysis, EPA has presented 
mortality-related benefits using estimates of avoided premature mortalities, representing the 
cumulative result of reducing the risk of premature mortality from long-term exposure to PM2.5 
for a large portion of the U.S. population.  Morbidity benefits have been characterized by 
numbers of new incidences avoided for chronic diseases such as CB, avoided admissions for 
hospitalizations associated with acute and chronic conditions, and avoided days with symptoms 
for minor illnesses.  Nonhealth benefits are characterized by the monetary value of reducing the 
impact (e.g., the dollar value of improvements in visibility at national parks). 

For the purposes of CEA, we focus the effectiveness measure on the quantifiable health impacts 
of the reduction in PM2.5.  Treatment of nonhealth benefits is important and is discussed in some 
detail later in this section.  If the main impact of interest is reductions in mortality risk from air 
pollution, the effectiveness measures are relatively straightforward to develop.  Mortality 
impacts can be characterized similar to the benefits analysis, by counting the number of 
premature mortalities avoided, or can be characterized in terms of increases in life expectancy or 
life years.1  Estimates of premature mortality have the benefit of being relatively simple to 
calculate, are consistent with the benefit-cost analysis, and do not impose additional assumptions 
on the degree of life shortening.  However, some have argued that counts of premature 
mortalities avoided are problematic because a gain in life of only a few months would be 
considered equivalent to a gain of a many life years, and the true effectiveness of an intervention 
is the gain in life expectancy or life years (Rabl, 2003; Miller and Hurley, 2003). 

Calculations of changes in life years and life expectancy can be accomplished using standard life 
table methods (Miller and Hurley, 2003).  However, the calculations require assumptions about 
the baseline mortality risks for each age cohort affected by air pollution.  A general assumption 
may be that air pollution mortality risks affect the general mortality risk of the population in a 
proportional manner.  However, some concerns have been raised that air pollution affects mainly 
those individuals with preexisting cardiovascular and respiratory disease, who may have reduced 
life expectancy relative to the general population.  This issue is explored in more detail below. 

Air pollution is also associated with a number of significant chronic and acute morbidity 
endpoints.  Failure to consider these morbidity effects may understate the cost-effectiveness of 
air pollution regulations or give too little weight to reductions in particular pollutants that have 
large morbidity impacts but no effect on life expectancy.  The QALY approach explicitly 
incorporates morbidity impacts into measures of life years gained and is often used in health 
economics to assess the cost-effectiveness of medical spending programs (Gold et al., 1996).  

                                                 
1 Life expectancy is an ex ante concept, indicating the impact on an entire population’s expectation of the number of 
life years they have remaining, before knowing which individuals will be affected.  Life expectancy thus 
incorporates both the probability of an effect and the impact of the effect if realized.  Life years is an ex post 
concept, indicating the impact on individuals who actually die from exposure to air pollution.  Changes in 
population life expectancy will always be substantially smaller than changes in life years per premature mortality 
avoided, although the total life years gained in the population will be the same.  This is because life expectancy 
gains average expected life years gained over the entire population, while life years gained measures life years 
gained only for those experiencing the life extension. 
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Using a QALY rating system, health quality ranges from 0 to 1, where 1 may represent full 
health, 0 death, and some number in between (e.g., 0.8) an impaired condition.  QALYs thus 
measure morbidity as a reduction in quality of life over a period of life.  QALYs assume that 
duration and quality of life are equivalent, so that 1 year spent in perfect health is equivalent to 2 
years spent with quality of life half that of perfect health.  QALYs can be used to evaluate 
environmental rules under certain circumstances, although some very strong assumptions 
(detailed below) are associated with QALYs.  The U.S. Public Health Service Panel on Cost 
Effectiveness in Health and Medicine recommended using QALYs when evaluating medical and 
public health programs that primarily reduce both mortality and morbidity (Gold et al., 1996).  
Although there are significant nonhealth benefits associated with air pollution regulations, over 
90 percent of quantifiable monetized benefits are health-related, as is the case with the 
attainment strategies for the PM NAAQS.  Thus, it can be argued that QALYs are more 
applicable for these types of regulations than for other environmental policies.  However, the 
value of nonhealth benefits should not be ignored.  As discussed below, we have chosen to 
subtract the value of nonhealth benefits from the costs in the numerator of the cost-effectiveness 
ratio. 

In the following sections, we lay out a phased approach to describing effectiveness.  We begin by 
discussing how the life-extending benefits of air pollution reductions are calculated, and then we 
incorporate morbidity effects using the QALY approach.  We also introduce an alternative 
aggregated health metric, Morbidity Inclusive Life Years (MILY) to address some of the ethical 
concerns about aggregating life extension impacts in populations with preexisting disabling 
conditions. 

The use of QALYs is predicated on the assumptions embedded in the QALY analytical 
framework.  As noted in the QALY literature, QALYs are consistent with the utility theory that 
underlies most of economics only if one imposes several restrictive assumptions, including 
independence between longevity and quality of life in the utility function, risk neutrality with 
respect to years of life (which implies that the utility function is linear), and constant 
proportionality in trade-offs between quality and quantity of life (Pliskin, Shepard, and 
Weinstein, 1980; Bleichrodt, Wakker, and Johannesson, 1996).  To the extent that these 
assumptions do not represent actual preferences, the QALY approach will not provide results 
that are consistent with a benefit-cost analysis based on the Kaldor-Hicks criterion.2  Even if the 
assumptions are reasonably consistent with reality, because QALYs represent an average 
valuation of health states rather than the sum of societal WTP, there are no guarantees that the 
option with the highest QALY per dollar of cost will satisfy the Kaldor-Hicks criterion (i.e., 
generate a potential Pareto improvement [Garber and Phelps, 1997]). 

Benefit-cost analysis based on WTP is not without potentially troubling underlying structures as 
well, incorporating ability to pay (and thus the potential for equity concerns) and the notion of 
consumer sovereignty (which emphasizes wealth effects).  Table G-1 compares the two 
approaches across a number of parameters.  For the most part, WTP allows parameters to be 
determined empirically, while the QALY approach imposes some conditions a priori. 
                                                 
2 The Kaldor-Hicks efficiency criterion requires that the “winners” in a particular case be potentially able to 
compensate the “losers” such that total societal welfare improves.  In this case, it is sufficient that total benefits 
exceed total costs of the regulation.  This is also known as a potential Pareto improvement, because gains could be 
allocated such that at least one person in society would be better off while no one would be worse off. 
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Table G-1: Comparison of QALY and WTP Approaches 

Parameter QALY WTP 

Risk aversion Risk neutral Empirically determined 

Relation of duration and quality Independent Empirically determined 

Proportionality of duration/ quality trade-off Constant Variable 

Treatment of time/age in utility function Utility linear in time Empirically determined 

Preferences Community/Individual Individual 

Source of preference data Stated Revealed and stated 

Treatment of income and prices Not explicitly considered Constrains choices 
 

G.4 Changes in Premature Death, Life Years, and Quality of Life 

To generate health outcomes, we used the same framework as for the benefit-cost analysis 
described in Chapter 5.  For convenience, we summarize the basic methodologies here.  For 
more details, see Chapter 5 and the BenMAP user’s manual 
(http://www.epa.gov/ttn/ecas/benmodels.html). 

BenMAP uses health impact functions to generate changes in the incidence of health effects.  
Health impact functions are derived from the epidemiology literature.  A standard health impact 
function has four components:  an effect estimate from a particular epidemiological study, a 
baseline incidence rate for the health effect (obtained from either the epidemiology study or a 
source of public health statistics like CDC), the affected population, and the estimated change in 
the relevant PM summary measure. 

A typical health impact function might look like this: 

 ∆ ∆y y e x= ⋅ −⋅
0 1( ) ,β

 

where y0 is the baseline incidence, equal to the baseline incidence rate times the potentially 
affected population; $ is the effect estimate; and )x is the estimated change in PM2.5.  There are 
other functional forms, but the basic elements remain the same. 

G.4.1 Calculating Reductions in Premature Deaths 

As in several recent air pollution health impact assessments (e.g., Kunzli et al., 2000;  EPA, 
2004), we focus on the prospective cohort long-term exposure studies in deriving the health 
impact function for the estimate of premature mortality.  Cohort analyses are better able to 
capture the full public health impact of exposure to air pollution over time (Kunzli et al., 2001; 
NRC, 2002).  We selected an effect estimate from the extended analysis of the ACS cohort (Pope 
et al., 2002).  This latest re-analysis of the ACS cohort data provides additional refinements to 
the analysis of PM-related mortality by (a) extending the follow-up period for the ACS study 
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subjects to 16 years, which triples the size of the mortality data set; (b) substantially increasing 
exposure data, including consideration for cohort exposure to PM2.5 following implementation of 
PM2.5 standard in 1999; (c) controlling for a variety of personal risk factors including 
occupational exposure and diet; and (d) using advanced statistical methods to evaluate specific 
issues that can adversely affect risk estimates, including the possibility of spatial autocorrelation 
of survival times in communities located near each other.  The effect estimate from Pope et al. 
(2002) quantifies the relationship between annual mean PM2.5 levels and all-cause mortality in 
adults 30 and older.  We selected the effect estimate estimated using the measure of PM 
representing average exposure over the follow-up period, calculated as the average of 1979–1984 
and 1999–2000 PM2.5 levels.  The effect estimate from this study is 0.0058, which is equivalent 
to a relative risk of 1.06 for a 10 :g change in PM2.5.  Although there are other cohort-based 
studies of the relationship between PM2.5 and mortality, none provide the same level of 
population and geographic coverage as the ACS study. 

Age, cause, and county-specific mortality rates were obtained from CDC for the years 1996 
through 1998.  CDC maintains an online data repository of health statistics, CDC Wonder, 
accessible at http://wonder.cdc.gov/.  The mortality rates provided are derived from U.S. death 
records and U.S. Census Bureau postcensal population estimates.  Mortality rates were averaged 
across 3 years (1996 through 1998) to provide more stable estimates.  When estimating rates for 
age groups that differed from the CDC Wonder groupings, we assumed that rates were uniform 
across all ages in the reported age group.  For example, to estimate mortality rates for individuals 
ages 30 and up, we scaled the 25- to 34-year old death count and population by one-half and then 
generated a population-weighted mortality rate using data for the older age groups. 

The reductions in incidence of premature mortality within each age group associated with the 
illustrative attainment strategies for the revised and more stringent alternative PM NAAQS in 
2020 are summarized in Table G-2. 

G.4.2 Calculating Changes in Life Years from Direct Reductions in PM2.5-Related Mortality 
Risk 

To calculate changes in life years associated with a given change in air pollution, we used a life 
table approach coupled with age-specific estimates of reductions in premature mortality.  We 
began with the complete unabridged life table for the United States in 2000, obtained from CDC 
(CDC, 2002).  For each 1-year age interval (e.g., zero to one, one to two) the life table provides 
estimates of the baseline probability of dying during the interval, person years lived in the 
interval, and remaining life expectancy.  From this unabridged life table, we constructed an 
abridged life table to match the age intervals for which we have predictions of changes in 
incidence of premature mortality.  We used the abridgement method described in CDC (2002).  
Table G-3 presents the abridged life table for 10-year age intervals for adults over 30 (to match 
the Pope et al. [2002] study population).  Note that the abridgement actually includes one 5-year 
interval, covering adults 30 to 34, with the remaining age intervals covering 10 years each.  This 
is to provide conformity with the age intervals available for mortality rates. 
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Table G-2: Estimated Reduction in Incidence of All-cause Premature Mortality Associated with 
Illustrative Attainment Strategies for the Revised and More Stringent Alternative PM 
NAAQS in 2020 

 Reduction in All-Cause Premature Mortality  
(95% CI) 

Age Interval 15/35 Attainment Strategy 14/35 Attainment Strategy 
30 – 34 25 

(8 – 41) 
40 

(13 – 68) 
35 – 44 76 

(25 – 130) 
120 

(39 – 210) 
45 – 54 150 

(48 – 250) 
250 

(80 – 420) 
55 – 64 350 

(110 – 590) 
610 

(200 – 1,000) 
65 – 74 530 

(170 – 890) 
970 

(310 – 1,600) 
75 – 84 610 

(200 – 1,000) 
1,100 

(350 – 1,800) 
85+ 810 

(260 – 1,400) 
1,300 

(430 – 2,300) 
Total 2,500 

(820 – 4,300) 
4,400 

(1,400 – 7,400) 
 

From the abridged life table (Table G-3), we obtained the remaining life expectancy for each age 
cohort, conditional on surviving to that age.  This is then the number of life years lost for an 
individual in the general population dying during that age interval.  This information can then be 
combined with the estimated number of premature deaths in each age interval calculated with 
BenMAP (see previous subsection).  Total life years gained will then be the sum of life years 
gained in each age interval: 

 
TotalLife Years LE Mi i

i

N

= ×
=
∑

1
,
 

where LEi is the remaining life expectancy for age interval i, Mi is the change in incidence of 
mortality in age interval i, and N is the number of age intervals. 

For the purposes of determining cost-effectiveness, it is also necessary to consider the time-
dependent nature of the gains in life years.  Standard economic theory suggests that benefits 
occurring in future years should be discounted relative to benefits occurring in the present.  OMB 
and EPA guidance suggest discount rates of three and seven percent.  As noted earlier, we 
present gains in future life years discounted at 3 percent.  Results based on 7 percent are included 
in the summary and the overall impact of a 7 percent rate is summarized in Table G-16.  
Selection of a 3 percent discount rate is also consistent with recommendations from the U.S. 
Public Health Service Panel on Cost Effectiveness in Health and Medicine (Gold et al., 1996). 
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Table G-3: Abridged Life Table for the Total Population, United States, 2000 

Age Interval 

Probability of 
Dying 

Between 
Ages x to 

x+1 

Number 
Surviving to 

Age x 

Number 
Dying 

Between 
Ages x to 

x+1 

Person 
Years Lived 

Between 
Ages x to 

x+1 

Total 
Number of 

Person 
Years Lived 
Above Age x 

Expectation 
of Life at 

Age x 

Start 
Age 

End 
Age qx Ix dx Lx Tx ex 

30 35 0.00577 97,696 564 487,130 4,723,539 48.3 

35 45 0.01979 97,132 1,922 962,882 4,236,409 43.6 

45 55 0.04303 95,210 4,097 934,026 3,273,527 34.4 

55 65 0.09858 91,113 8,982 872,003 2,339,501 25.7 

65 75 0.21779 82,131 17,887 740,927 1,467,498 17.9 

75 85 0.45584 64,244 29,285 505,278 726,571 11.3 

85 95 0.79256 34,959 27,707 196,269 221,293 6.3 

95 100 0.75441 7,252 5,471 20,388 25,024 3.5 

100+  1.00000 1,781 1,781 4,636 4,636 2.6 
 

Discounted total life years gained is calculated as follows: 

 
Discounted LY e dtrtLE

= −∫ ,
0  

where r is the discount rate, equal to 0.03 in this case, t indicates time, and LE is the life 
expectancy at the time when the premature death would have occurred.  Life years are further 
discounted to account for the lag between the reduction in ambient PM2.5 and the reduction in 
mortality risk.  We use the same 20-year segmented lag structure that is used in the benefit-cost 
analysis (see Chapter 5). 

The most complete estimate of the impacts of PM2.5 on life years is calculated using the Pope et 
al. (2002) C-R function relating all-cause mortality in adults 30 and over with ambient PM2.5 
concentrations averaged over the periods 1979–1983 and 1999–2000.  Use of all-cause mortality 
is appropriate if there are no differences in the life expectancy of individuals dying from air 
pollution-related causes and those dying from other causes.  The argument that long-term 
exposure to PM2.5 may affect mainly individuals with serious preexisting illnesses is not 
supported by current empirical studies.  For example, the Krewski et al. (2000) ACS reanalysis 
suggests that the mortality risk is no greater for those with preexisting illness at time of 
enrollment in the study.  Life expectancy for the general population in fact includes individuals 
with serious chronic illness.  Mortality rates for the general population then reflect prevalence of 
chronic disease, and as populations age the prevalence of chronic disease increases. 
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The only reason one might use a lower life expectancy is if the population at risk from air 
pollution was limited solely to those with preexisting disease.  Also, note that the OMB Circular 
A-4 notes that “if QALYs are used to evaluate a lifesaving rule aimed at a population that 
happens to experience a high rate of disability (i.e., where the rule is not designed to affect the 
disability), the number of life years saved should not necessarily be diminished simply because 
the rule saves lives of people with life-shortening disabilities.  Both analytic simplicity and 
fairness suggest that the estimate number of life years saved for the disabled population should 
be based on average life expectancy information for the relevant age cohorts.”  As such, use of a 
general population life expectancy is preferred over disability-specific life expectancies.  Our 
primary life years calculations are thus consistent with the concept of not penalizing individuals 
with disabling chronic health conditions by assessing them reduced benefits of mortality risk 
reductions. 

For this analysis, direct impacts on life expectancy are measured only through the estimated 
change in mortality risk based on the Pope et al. (2002) C-R function.  The SAB-HES has 
advised against including additional gains in life expectancy due to reductions in incidence of 
chronic disease or nonfatal heart attacks (EPA-SAB-COUNCIL-ADV-04-002).  Although 
reductions in these endpoints are likely to result in increased life expectancy, the HES has 
suggested that the cohort design and relatively long follow-up period in the Pope et al. study 
should capture any life-prolonging impacts associated with those endpoints.  Impacts of CB and 
nonfatal heart attacks on quality of life will be captured separately in the QALY calculation as 
years lived with improved quality of life.  The methods for calculating this benefit are discussed 
below. 

G.4.2.1 Should Life Years Gained Be Adjusted for Initial Health Status? 

The methods outlined above provide estimates of the total number of life years gained in a 
population, regardless of the quality of those life years, or equivalently, assuming that all life 
years gained are in perfect health.  In some CEAs (Cohen, Hammitt, and Levy, 2003; Coyle et 
al., 2003), analysts have adjusted the number of life years gained to reflect the fact that 1) the 
general public is not in perfect health and thus “healthy” life years are less than total life years 
gained and 2) those affected by air pollution may be in a worse health state than the general 
population and therefore will not gain as many “healthy” life years adjusted for quality, from an 
air pollution reduction.  This adjustment, which converts life years gained into QALYs, raises a 
number of serious ethical issues.  Proponents of QALYs have promoted the nondiscriminatory 
nature of QALYs in evaluating improvements in quality of life (e.g., an improvement from a 
score of 0.2 to 0.4 is equivalent to an improvement from 0.8 to 1.0), so the starting health status 
does not affect the evaluation of interventions that improve quality of life.  However, for life-
extending interventions, the gains in QALY will be directly proportional to the baseline health 
state (e.g., an individual with a 30-year life expectancy and a starting health status of 0.5 will 
gain exactly half the QALYs of an individual with the same life expectancy and a starting health 
status of 1.0 for a similar life-extending intervention).  This is troubling because it imposes an 
additional penalty for those already suffering from disabling conditions.  Brock (2002) notes that 
“the problem of disability discrimination represents a deep and unresolved problem for resource 
prioritization.” 
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OMB (2003) has recognized this issue in their Circular A-4 guidance, which includes the 
following statement: 

 When CEA is performed in specific rulemaking contexts, you should be prepared to 
make appropriate adjustments to ensure fair treatment of all segments of the 
population.  Fairness is important in the choice and execution of effectiveness 
measures.  For example, if QALYs are used to evaluate a lifesaving rule aimed at a 
population that happens to experience a high rate of disability (i.e., where the rule is 
not designed to affect the disability), the number of life years saved should not 
necessarily be diminished simply because the rule saves the lives of people with life-
shortening disabilities.  Both analytic simplicity and fairness suggest that the 
estimated number of life years saved for the disabled population should be based on 
average life expectancy information for the relevant age cohorts.  More generally, 
when numeric adjustments are made for life expectancy or quality of life, analysts 
should prefer use of population averages rather than information derived from 
subgroups dominated by a particular demographic or income group. (p. 13) 

This suggests two adjustments to the standard QALY methodology:  one adjusting the relevant 
life expectancy of the affected population, and the other affecting the baseline quality of life for 
the affected population. 

In addition to the issue of fairness, potential measurement issues are specific to the air pollution 
context that might argue for caution in applying quality-of-life adjustments to life years gained 
due to air pollution reductions.  A number of epidemiological and toxicological studies link 
exposure to air pollution with chronic diseases, such as CB and atherosclerosis (Abbey et al., 
1995; Schwartz, 1993; Suwa et al., 2002).  If these same individuals with chronic disease caused 
by exposure to air pollution are then at increased risk of premature death from air pollution, there 
is an important dimension of “double jeopardy” involved in determining the correct baseline for 
assessing QALYs lost to air pollution (see Singer et al. [1995] for a broader discussion of the 
double-jeopardy argument). 

Analyses estimating mortality from acute exposures that ignore the effects of long-term exposure 
on morbidity may understate the health impacts of reducing air pollution.  Individuals exposed to 
chronically elevated levels of air pollution may realize an increased risk of death and chronic 
disease throughout life.  If at some age they contract heart (or some other chronic) disease as a 
result of the exposure to air pollution, they will from that point forward have both reduced life 
expectancy and reduced quality of life.  The benefit to that individual from reducing lifetime 
exposure to air pollution would be the increase in life expectancy plus the increase in quality of 
life over the full period of increased life expectancy.  If the QALY loss is determined based on 
the underlying chronic condition and life expectancy without regard to the fact that the person 
would never have been in that state without long-term exposure to elevated air pollution, then the 
person is placed in double jeopardy.  In other words, air pollution has placed more people in the 
susceptible pool, but then we penalize those people in evaluating policies by treating their 
subsequent deaths as less valuable, adding insult to injury, and potentially downplaying the 
importance of life expectancy losses due to air pollution.  If the risk of chronic disease and risk 
of death are considered together, then there is no conceptual problem with measuring QALYs, 
but this has not been the case in recent applications of QALYs to air pollution (Carrothers, 
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Evans, and Graham, 2002; Coyle et al., 2003).  The use of QALYs thus highlights the need for a 
better understanding of the relationship between chronic disease and long-term exposure and 
suggests that analyses need to consider morbidity and mortality jointly, rather than treating each 
as a separate endpoint (this is an issue for current benefit-cost approaches as well). 

Because of the fairness and measurement concerns discussed above, for the purposes of this 
analysis, we do not reduce the number of life years gained to reflect any differences in 
underlying health status that might reduce quality of life in remaining years.  Thus, we maintain 
the assumption that all direct gains in life years resulting from mortality risk reductions will be 
assigned a weight of 1.0.  The U.S. Public Health Service Panel on Cost Effectiveness in Health 
and Medicine recommends that “since lives saved or extended by an intervention will not be in 
perfect health, a saved life year will count as less than 1 full QALY” (Gold et al., 1996).  
However, for the purposes of this analysis, we propose an alternative to the traditional aggregate 
QALY metric that keeps separate quality adjustments to life expectancy and gains in life 
expectancy.  As such, we do not make any adjustments to life years gained to reflect the less than 
perfect health of the general population.  Gains in quality of life will be addressed as they accrue 
because of reductions in the incidence of chronic diseases.  This is an explicit equity choice in 
the treatment of issues associated with quality-of-life adjustments for increases in life expectancy 
that still capitalizes on the ability of QALYs to capture both morbidity and mortality impacts in a 
single effectiveness measure. 

G.5 Calculating Changes in the Quality of Life Years (Morbidity) 

In addition to directly measuring the quantity of life gained, measured by life years, it may also 
be informative to measure gains in the quality of life.  Reducing air pollution also leads to 
reductions in serious illnesses that affect quality of life.  These include CB and cardiovascular 
disease, for which we are able to quantify changes in the incidence of nonfatal heart attacks.  To 
capture these important benefits in the measure of effectiveness, they must first be converted into 
a life-year equivalent so that they can be combined with the direct gains in life expectancy. 

For this analysis, we developed estimates of the QALYs gained from reductions in the incidence 
of CB and nonfatal heart attacks associated with reductions in ambient PM2.5.  In general, QALY 
calculations require four elements: 

1. the estimated change in incidence of the health condition, 

2. the duration of the health condition, 

3. the quality-of-life weight with the health condition, and 

4. the quality-of-life weight without the health condition (i.e., the baseline health state). 

The first element is derived using the health impact function approach.  The second element is 
based on the medical literature for each health condition.  The third and fourth elements are 
derived from the medical cost-effectiveness and cost-utility literature.  In the following two 
subsections, we discuss the choices of elements for CB and nonfatal heart attacks. 

The preferred source of quality-of-life weights are those based on community preferences, rather 
than patient or clinician ratings (Gold et al., 1996).  Several methods are used to estimate quality-
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of-life weights.  These include rating scale, standard gamble, time trade-off, and person trade-off 
approaches (Gold, Stevenson, and Fryback, 2002).  Only the standard gamble approach is 
completely consistent with utility theory.  However, the time trade-off method has also been 
widely applied in eliciting community preferences (Gold, Stevenson, and Fryback, 2002). 

Quality-of-life weights can be directly elicited for individual specific health states or for a more 
general set of activity restrictions and health states that can then be used to construct QALY 
weights for specific conditions (Horsman et al., 2003; Kind, 1996).  For this analysis, we used 
weights based on community-based preferences, using time trade-off or standard gamble when 
available.  In some cases, we used patient or clinician ratings when no community preference-
based weights were available.  Sources for weights are discussed in more detail below.  Table G-4 
summarizes the key inputs for calculating QALYs associated with chronic health endpoints. 

G.5.1 Calculating QALYs Associated with Reductions in the Incidence of Chronic Bronchitis 

CB is characterized by mucus in the lungs and a persistent wet cough for at least 3 months a year 
for several years in a row.  CB affects an estimated 5 percent of the U.S. population (American 
Lung Association, 1999).  For gains in quality of life resulting from reduced incidences of PM-
induced CB, discounted QALYs are calculated as 

 
( )DISCOUNTED QALYGAINED CB D w wi i i i

CB

i
= × × −∑∆ *

  

where )CBi is the number of incidences of CB avoided in age interval i, wi is the average QALY 

weight for age interval i, w i
CB

  is the QALY weight associated with CB, Di
*

  is the discounted 

duration of life with CB for individuals with onset of disease in age interval i, equal to 

e d trt

t

Di −

=∫ 1
, where Di is the duration of life with CB for individuals with onset of disease in age 

interval i. 

A limited number of studies have estimated the impact of air pollution on new incidences of CB.  
Schwartz (1993) and Abbey et al. (1995) provide evidence that long-term PM exposure gives 
rise to the development of CB in the United States.  Because this analysis focuses on the impacts 
of reducing ambient PM2.5, only the Abbey et al. (1995) study is used, because it is the only 
study focusing on the relationship between PM2.5 and new incidences of CB.  The number of 
cases of CB in each age interval is derived from applying the impact function from Abbey et al. 
(1995), to the population in each age interval with the appropriate baseline incidence rate.3  The 
effect estimate from the Abbey et al. (1995) study is 0.0137, which, based on the logistic 
specification of the model, is equivalent to a relative risk of 1.15 for a 10 :g change in PM2.5.  
Table G-5 presents the estimated reduction in new incidences of CB associated with the 
illustrative PM NAAQS attainment strategies. 

                                                 
3 Prevalence rates for CB were obtained from the 1999 National Health Interview Survey (American Lung 
Association, 2002).  Prevalence rates were available for three age groups:  18–44, 45–64, and 65 and older.  
Prevalence rates per person for these groups were 0.0367 for 18–44, 0.0505 for 45–64, and 0.0587 for 65 and older.  
The incidence rate for new cases of CB (0.00378 per person) was taken directly from Abbey et al. (1995). 
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Table G-4: Summary of Key Parameters Used in QALY Calculations for Chronic Disease 
Endpoints 

Parameter Value(s) Source(s) 

Discount rate 0.03 (0.07 
sensitivity 
analysis) 

Gold et al. (1996), U.S. EPA (2000), U.S. OMB (2003) 

Quality of life preference 
score for chronic 
bronchitis 

0.5 – 0.7 Triangular distribution centered at 0.7 with upper bound at 
0.9 (Vos, 1999a) (slightly better than a mild/moderate case) 
and a lower bound at 0.5 (average weight for a severe case 
based on Vos [1999a] and Smith and Peske [1994]) 

Duration of acute phase 
of acute myocardial 
infarction (AMI) 

5.5 days – 22 
days 

Uniform distribution with lower bound based on average 
length of stay for an AMI (AHRQ, 2000) and upper bound 
based on Vos (1999b). 

Probability of CHF post 
AMI 

0.2 Vos, 1999a (WHO Burden of Disease Study, based on 
Cowie et al., 1997) 

Probability of angina post 
AMI 

0.51 American Heart Association, 2003 
(Calculated as the population with angina divided by the 
total population with heart disease) 

Quality-of-life preference 
score for post-AMI with 
CHF (no angina) 

0.80 – 0.89 Uniform distribution with lower bound at 0.80 (Stinnett et 
al., 1996) and upper bound at 0.89 (Kuntz et al., 1996).  
Both studies used the time trade-off elicitation method. 

Quality-of-life preference 
score for post-AMI with 
CHF and angina 

0.76 – 0.85 Uniform distribution with lower bound at 0.76 (Stinnett et 
al., 1996, adjusted for severity) and upper bound at 0.85 
(Kuntz et al., 1996).  Both studies used the time trade-off 
elicitation method. 

Quality-of-life preference 
score for post-AMI with 
angina (no CHF) 

0.7 – 0.89 Uniform distribution with lower bound at 0.7, based on the 
standard gamble elicitation method (Pliskin, Stason, and 
Weinstein, 1981) and upper bound at 0.89, based on the 
time trade-off method (Kuntz et al., 1996). 

Quality-of-life preference 
score for post-AMI (no 
angina, no CHF) 

0.93 Only one value available from the literature.  Thus, no 
distribution is specified.  Source of value is Kuntz et al. 
(1996). 

 

CB is assumed to persist for the remainder of an affected individual’s lifespan.  Duration of CB 
will thus equal life expectancy conditioned on having CB.  CDC has estimated that COPD (of 
which CB is one element) results in an average loss of life years equal to 4.26 per COPD death, 
relative to a reference life expectancy of 75 years (CDC, 2003).  Thus, we subtract 4.26 from the 
remaining life expectancy for each age group, up to age 75.  For age groups over 75, we apply 
the ratio of 4.26 to the life expectancy for the 65 to 74 year group (0.237) to the life expectancy 
for the 75 to 84 and 85 and up age groups to estimate potential life years lost and then subtract 
that value from the base life expectancy. 
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Table G-5: Estimated Reduction in Incidence of Chronic Bronchitis Associated with Illustrative 
Attainment Strategies for the Revised and More Stringent Alternative PM NAAQS in 
2020 

 Reduction in Incidence (95% Confidence Interval) 

Age Interval 15/35 Attainment Strategy 14/35 Attainment Strategy 
25 – 34 490 

(47 – 940) 
830 

(77 – 1,600) 
35 – 44 560 

(53 – 1,100) 
950 

(88 – 1,800) 
45 – 54 510 

(48 – 960) 
880 

(81 – 1,700) 
55 – 64 490 

(46 – 940) 
890 

(82 – 1,700) 
65 – 74 340 

(32 – 640) 
630 

(58 – 1,200) 
75 – 84 170 

(16 – 320) 
310 

(28 – 580) 
85+ 74 

(7 – 140) 
130 

(12 – 250) 
Total 2,600 

(250 – 5,000) 
4,600 

(426 – 8,800) 
 

Quality of life with chronic lung diseases has been examined in several studies.  In an analysis of 
the impacts of environmental exposures to contaminants, de Hollander et al. (1999) assigned a 
weight of 0.69 to years lived with CB.  This weight was based on physicians’ evaluations of 
health states similar to CB.  Salomon and Murray (2003) estimated a pooled weight of 0.77 
based on visual analogue scale, time trade-off, standard gamble, and person trade-off techniques 
applied to a convenience sample of health professionals.  The Harvard Center for Risk Analysis 
catalog of preference scores reports a weight of 0.40 for severe COPD, with a range from 0.2 to 
0.8, based on the judgments of the study’s authors (Bell et al., 2001).  The Victoria Burden of 
Disease (BoD) study used a weight of 0.47 for severe COPD and 0.83 for mild to moderate 
COPD, based on an analysis by Stouthard et al. (1997) of chronic diseases in Dutch populations 
(Vos, 1999a).  Based on the recommendations of Gold et al. (1996), quality-of-life weights based 
on community preferences are preferred for CEA of interventions affecting broad populations.  
Use of weights based on health professionals is not recommended.  It is not clear from the 
Victoria BoD study whether the weights used for COPD are based on community preferences or 
judgments of health professionals.  The Harvard catalog score is clearly identified as based on 
author judgment.  Given the lack of a clear preferred weight, we select a triangular distribution 
centered at 0.7 with an upper bound at 0.9 (slightly better than a mild/moderate case defined by 
the Victoria BoD study) and a lower bound at 0.5 based on the Victoria BoD study.  We will 
need additional empirical data on quality of life with chronic respiratory diseases based on 
community preferences to improve our estimates. 

Selection of a reference weight for the general population without CB is somewhat uncertain.  It 
is clear that the general population is not in perfect health; however, there is some uncertainty as 
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to whether individuals’ ratings of health states are in reference to a perfect health state or to a 
generally achievable “normal” health state given age and general health status.  The U.S. Public 
Health Service Panel on Cost Effectiveness in Health and Medicine recommends that “since 
lives saved or extended by an intervention will not be in perfect health, a saved life year will 
count as less than 1 full QALY” (Gold et al., 1996).  Following Carrothers, Evans, and Graham 
(2002), we assumed that the reference weight for the general population without CB is 0.95.  To 
allow for uncertainty in this parameter, we assigned a triangular distribution around this weight, 
bounded by 0.9 and 1.0.  Note that the reference weight for the general population is used solely 
to determine the incremental quality-of-life improvement applied to the duration of life that 
would have been lived with the chronic disease.  For example, if CB has a quality-of-life weight 
of 0.7 relative to a reference quality-of-life weight of 0.9, then the incremental quality-of-life 
improvement in 0.2.  If the reference quality-of-life weight is 0.95, then the incremental quality-
of-life improvement is 0.25.  As noted above, the population is assumed to have a reference 
weight of 1.0 for all life years gained due to mortality risk reductions. 

We present discounted QALYs over the duration of the lifespan with CB using a 3 percent 
discount rate.  Based on the assumptions defined above, we used Monte Carlo simulation 
methods as implemented in the Crystal Ball™ software program to develop the distribution of 
QALYs gained per incidence of CB for each age interval.4  Based on the assumptions defined 
above, the mean 3 percent discounted QALY gained per incidence of CB for each age interval 
along with the 95 percent confidence interval resulting from the Monte Carlo simulation is 
presented in Table G-6.  Table G-6 presents both the undiscounted and discounted QALYs 
gained per incidence. 

Table G-6: QALYs Gained per Avoided Incidence of CB 

Age Interval QALYs Gained per Incidence 
Start Age End Age Undiscounted Discounted (3%) 

25 34 12.15 
(4.40-19.95) 

6.52 
(2.36-10.71) 

35 44 9.91 
(3.54-16.10) 

5.94 
(2.12-9.66) 

45 54 7.49 
(2.71-12.34) 

5.03 
(1.82-8.29) 

55 64 5.36 
(1.95-8.80) 

4.03 
(1.47-6.61) 

65 74 3.40 
(1.22-5.64) 

2.84 
(1.02-4.71) 

75 84 2.15 
(0.77-3.49) 

1.92 
(0.69-3.13) 

85+  0.79 
(0.27-1.29) 

0.77 
(0.26-1.25) 

 

                                                 
4 Monte Carlo simulation uses random sampling from distributions of parameters to characterize the effects of 
uncertainty on output variables.  For more details, see Gentile (1998). 
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G.5.2 Calculating QALYs Associated with Reductions in the Incidence of Nonfatal Myocardial 
Infarctions 

Nonfatal heart attacks, or acute myocardial infarctions, require more complicated calculations to 
derive estimates of QALY impacts.  The actual heart attack, which results when an area of the 
heart muscle dies or is permanently damaged because of oxygen deprivation, and subsequent 
emergency care are of relatively short duration.  Many heart attacks result in sudden death.  
However, for survivors, the long-term impacts of advanced CHD are potentially of long duration 
and can result in significant losses in quality of life and life expectancy. 

In this phase of the analysis, we did not independently estimate the gains in life expectancy 
associated with reductions in nonfatal heart attacks.  Based on recommendations from the SAB-
HES, we assumed that all gains in life expectancy are captured in the estimates of reduced 
mortality risk provided by the Pope et al. (2002) analysis.  We only estimate the change in 
quality of life over the period of life affected by the occurrence of a heart attack.  This may 
understate the QALY impacts of nonfatal heart attacks but ensures that the overall QALY impact 
estimates across endpoints do not double-count potential life-year gains. 

Our approach adapts a CHD model developed for the Victoria Burden of Disease study (Vos, 
1999b).  This model accounts for the lost quality of life during the heart attack and the possible 
health states following the heart attack.  Figure G-1 shows the heart attack QALY model in 
diagrammatic form. 

The total gain in QALYs is calculated as: 

 
( ) ( )

DISCOUNTED AMI QALY GAINED

AMI D w w AMI p D w wi i
AMI

i i
AMI

i j
i j ij

PostAMI
i ij

postAMI

i

=

× × − + × × −∑ ∑∑
=

∆ ∆* *

1

4

  

where )AMIi is the number of nonfatal acute myocardial infarctions avoided in age interval i, 
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Figure G-1. Decision Tree Used in Modeling Gains in QALYs from Reduced Incidence of 
Nonfatal Acute Myocardial Infarctions 

Nonfatal heart attacks have been linked with short-term exposures to PM2.5 in the United States 
(Peters et al., 2001) and other countries (Poloniecki et al., 1997).  We used a recent study by 
Peters et al. (2001) as the basis for the impact function estimating the relationship between PM2.5 
and nonfatal heart attacks.  Peters et al. is the only available U.S. study to provide a specific 
estimate for heart attacks.  Other studies, such as Samet et al. (2000) and Moolgavkar (2000), 
show a consistent relationship between all cardiovascular hospital admissions, including for 
nonfatal heart attacks, and PM.  Given the lasting impact of a heart attack on longer-term health 
costs and earnings, we chose to provide a separate estimate for nonfatal heart attacks based on 
the single available U.S. effect estimate.  The finding of a specific impact on heart attacks is 
consistent with hospital admission and other studies showing relationships between fine particles 
and cardiovascular effects both within and outside the United States.  These studies provide a 
weight of evidence for this type of effect.  Several epidemiologic studies (Liao et al., 1999; Gold 
et al., 2000; Magari et al., 2001) have shown that heart rate variability (an indicator of how much 
the heart is able to speed up or slow down in response to momentary stresses) is negatively 
related to PM levels.  Heart rate variability is a risk factor for heart attacks and other CHDs 
(Carthenon et al., 2002; Dekker et al., 2000; Liao et al., 1997, Tsuji et al., 1996).  As such, 
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significant impacts of PM on heart rate variability are consistent with an increased risk of heart 
attacks. 

The number of avoided nonfatal AMI in each age interval is derived from applying the impact 
function from Peters et al. (2001) to the population in each age interval with the appropriate 
baseline incidence rate.5  The effect estimate from the Peters et al. (2001) study is 0.0241, which, 
based on the logistic specification of the model, is equivalent to a relative risk of 1.27 for a 10 :g 
change in PM2.5.  Table G-7 presents the estimated reduction in nonfatal AMI associated with the 
illustrative PM NAAQS attainment strategies. 

Table G-7: Estimated Reduction in Nonfatal Acute Myocardial Infarctions Associated  with 
Illustrative Attainment Strategies for the Revised and More Stringent Alternative PM 
NAAQS in 2020 

 Reduction in Incidence*(95% Confidence Interval) 

Age Interval 15/35 Attainment Strategy 14/35 Attainment Strategy 
18 – 24 1 

(1 – 2) 
4 

(2 – 6) 
25 – 34 8 

(4 – 12) 
26 

(13 – 40) 
35 – 44 170 

(84 – 250) 
280 

(140 – 430) 
45 – 54 520 

(260 – 790) 
930 

(460 – 1,400) 
55 – 64 1,300 

(630 – 1,900) 
2,100 

(1,100 – 3,200) 
65 – 74 1,500 

(770 – 2,300) 
2,600 

(1,300 – 3,900) 
75 – 84 980 

(490 – 1,500) 
1,800 

(900 – 2,800) 
85+ 520 

(260 – 780) 
940 

(460 – 1,400) 
Total 5,000 

(2,500 – 7,500) 
8,700 

(4,300 – 13,000) 
 

Acute myocardial infarction results in significant loss of quality of life for a relatively short 
duration.  The WHO Global Burden of Disease study, as reported in Vos (1999b), assumes that 
the acute phase of an acute myocardial infarction lasts for 0.06 years, or around 22 days.  An 
alternative assumption is the acute phase is characterized by the average length of hospital stay 
for an AMI in the United States, which is 5.5 days, based on data from the Agency for 

                                                 
5 Daily nonfatal myocardial infarction incidence rates per person were obtained from the 1999 National Hospital 
Discharge Survey (assuming all diagnosed nonfatal AMI visit the hospital).  Age-specific rates for four regions are 
used in the analysis.  Regional averages for populations 18 and older are 0.0000159 for the Northeast, 0.0000135 for 
the Midwest, 0.0000111 for the South, and 0.0000100 for the West. 
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Healthcare Research and Quality’s Healthcare Cost and Utilization Project (HCUP).6  We 
assumed a distribution of acute phase duration characterized by a uniform distribution between 
5.5 and 22 days, noting that due to earlier discharges and in-home therapy available in the United 
States, duration of reduced quality of life may continue after discharge from the hospital.  In the 
period during and directly following an AMI (the acute phase), we assigned a quality of life 
weight equal to 0.605, consistent with the weight for the period in treatment during and 
immediately after an attack (Vos, 1999b). 

During the post-AMI period, a number of different health states can determine the loss in quality 
of life.  We chose to classify post-AMI health status into four states defined by the presence or 
absence of angina and congestive heart failure (CHF).  This makes a very explicit assumption 
that without the occurrence of an AMI, individuals would not experience either angina or CHF.  
If in fact individuals already have CHF or angina, then the quality of life gained will be 
overstated.  We do not have information about the percentage of the population have been 
diagnosed with angina or CHF with no occurrence of an AMI.  Nor do we have information on 
what proportion of the heart attacks occurring due to PM exposure are first heart attacks versus 
repeat attacks.  Probabilities for the four post-AMI health states sum to one. 

Given the occurrence of a nonfatal AMI, the probability of congestive heart failure is set at 0.2, 
following the heart disease model developed by Vos (1999b).  The probability is based on a 
study by Cowie et al. (1997), which estimated that 20 percent of those surviving AMI develop 
heart failure, based on an analysis of the results of the Framingham Heart Study. 

The probability of angina is based on the prevalence rate of angina in the U.S. population.  Using 
data from the American Heart Association, we calculated the prevalence rate for angina by 
dividing the estimated number of people with angina (6.6 million) by the estimated number of 
people with CHD of all types (12.9 million).  We then assumed that the prevalence of angina in 
the population surviving an AMI is similar to the prevalence of angina in the total population 
with CHD.  The estimated prevalence rate is 51 percent, so the probability of angina is 0.51. 

Combining these factors leads to the probabilities for each of the four health states as follows: 

I. Post AMI with CHF and angina = 0.102 

II. Post AMI with CHF without angina = 0.098 

III. Post AMI with angina without CHF = 0.408 

IV. Post AMI without angina or CHF = 0.392 

Duration of post-AMI health states varies, based in part on assumptions regarding life 
expectancy with post-AMI complicating health conditions.  Based on the model used for 
established market economies (EME) in the WHO Global Burden of Disease study, as reported 
in Vos (1999b), we assumed that individuals with CHF have a relatively short remaining life 
expectancy and thus a relatively short period with reduced quality of life (recall that gains in life 
expectancy are assumed to be captured by the cohort estimates of reduced mortality risk).  
                                                 
6 Average length of stay estimated from the HCUP data includes all discharges, including those due to death.  As 
such, the 5.5-day average length of stay is likely an underestimate of the average length of stay for AMI admissions 
where the patient is discharged alive. 
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Table G-8 provides the duration (both discounted and undiscounted) of CHF assumed for post-
AMI cases by age interval. 

Table G-8: Assumed Duration of Congestive Heart Failure 

Age Interval Duration of Heart Failure (years) 
Start Age End Age Undiscounted Discounted (3%) 

18 24 7.11 6.51 
25 34 6.98 6.40 
35 44 6.49 6.00 
45 54 5.31 4.99 
55 64 1.96 1.93 
65 74 1.71 1.69 
75 84 1.52 1.50 

85+  1.52 1.50 
 

Duration of health states without CHF is assumed to be equal to the life expectancy of 
individuals conditional on surviving an AMI.  Ganz et al. (2000) note that “Because patients with 
a history of myocardial infarction have a higher chance of dying of CHD that is unrelated to 
recurrent myocardial infarction (for example, arrhythmia), this cohort has a higher risk for death 
from causes other than myocardial infarction or stroke than does an unselected population.”  
They go on to specify a mortality risk ratio of 1.52 for mortality from other causes for the cohort 
of individuals with a previous (nonfatal) AMI.  The risk ratio is relative to all-cause mortality for 
an age-matched unselected population (i.e., general population).  We adopted the same ratios and 
applied them to each age-specific all-cause mortality rate to derive life expectancies (both 
discounted and undiscounted) for each age group after an AMI, presented in Table G-9.  These 
life expectancies are then used to represent the duration of non-CHF post-AMI health states (III 
and IV). 

Table G-9: Assumed Duration of Non-CHF Post-AMI Health States 

Age Interval Post-AMI Years of Life Expectancy (non-CHF) 

Start Age End Age Undiscounted Discounted (3%) 
18 24 55.5 27.68 
25 34 46.1 25.54 
35 44 36.8 22.76 
45 54 27.9 19.28 
55 64 19.8 15.21 
65 74 12.8 10.82 
75 84 7.4 6.75 

85+  3.6 3.47 
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For the four post-AMI health states, we used QALY weights based on preferences for the 
combined conditions characterizing each health state.  A number of estimates of QALY weights 
are available for post-AMI health conditions. 

The first two health states are characterized by the presence of CHF, with or without angina.  
The Harvard Center for Risk Analysis catalog of preference scores provides several specific 
weights for CHF with and without mild or severe angina and one set specific to post-AMI CHF.  
Following the Victoria Burden of Disease model, we assumed that most cases of angina will be 
treated and thus kept at a mild to moderate state.  We thus focused our selection on QALY 
weights for mild to moderate angina.  The Harvard database includes two sets of community 
preference-based scores for CHF (Stinnett et al., 1996; Kuntz et al., 1996).  The scores for CHF 
with angina range from 0.736 to 0.85.  The lower of the two scores is based on angina in general 
with no delineation by severity.  Based on the range of the scores for mild to severe cases of 
angina in the second study, one can infer that an average case of angina has a score around 0.96 
of the score for a mild case.  Applying this adjustment raises the lower end of the range of 
preference scores for a mild case of angina to 0.76.  We selected a uniform distribution over the 
range 0.76 to 0.85 for CHF with mild angina, with a midpoint of 0.81.  The same two studies in 
the Harvard catalog also provide weights for CHF without angina.  These scores range from 
0.801 to 0.89.  We selected a uniform distribution over this range, with a midpoint of 0.85. 

The third health state is characterized by angina, without the presence of CHF.  The Harvard 
catalog includes five sets of community preference-based scores for angina, one that specifies 
scores for both mild and severe angina (Kuntz et al., 1996), one that specifies mild angina only 
(Pliskin, Stason, and Weinstein, 1981), one that specifies severe angina only (Cohen, Breall, and 
Ho, 1994), and two that specify angina with no severity classification (Salkeld, Phongsavan, and 
Oldenburg, 1997; Stinnett et al., 1996).  With the exception of the Pliskin, Stason, and Weinstein 
score, all of the angina scores are based on the time trade-off method of elicitation.  The Pliskin, 
Stason, and Weinstein score is based on the standard gamble elicitation method.  The scores for 
the nonspecific severity angina fall within the range of the two scores for mild angina 
specifically.  Thus, we used the range of mild angina scores as the endpoints of a uniform 
distribution.  The range of mild angina scores is from 0.7 to 0.89, with a midpoint of 0.80. 

For the fourth health state, characterized by the absence of CHF and/or angina, there is only one 
relevant community preference score available from the Harvard catalog.  This score is 0.93, 
derived from a time trade-off elicitation (Kuntz et al., 1996).  Insufficient information is 
available to provide a distribution for this weight; therefore, it is treated as a fixed value. 

Similar to CB, we assumed that the reference weight for the general population without AMI is 
0.95.  To allow for uncertainty in this parameter, we assigned a triangular distribution around this 
weight, bounded by 0.9 and 1.0. 

Based on the assumptions defined above, we used Monte Carlo simulation methods as 
implemented in the Crystal Ball™ software program to develop the distribution of QALYs 
gained per incidence of nonfatal AMI for each age interval.  For the Monte Carlo simulation, all 
distributions were assumed to be independent.  The mean QALYs gained per incidence of  
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nonfatal AMI for each age interval is presented in Table G-10, along with the 95 percent 
confidence interval resulting from the Monte Carlo simulation.  Table G-10 presents both the 
undiscounted and discounted QALYs gained per incidence. 

Table G-10: QALYs Gained per Avoided Nonfatal Myocardial Infarction 

Age Interval QALYs Gained per Incidencea 

Start Age End Age Undiscounted Discounted (3%) 
18 24 4.18 

(1.24-7.09) 
2.17 

(0.70-3.62) 
25 34 3.48 

(1.09-5.87) 
2.00 

(0.68-3.33) 
35 44 2.81 

(0.88-4.74) 
1.79 

(0.60-2.99) 
45 54 2.14 

(0.67-3.61) 
1.52 

(0.51-2.53) 
55 64 1.49 

(0.42-2.52) 
1.16 

(0.34-1.95) 
65 74 0.97 

(0.30-1.64) 
0.83 

(0.26-1.39) 
75 84 0.59 

(0.20-0.97) 
0.54 

(0.19-0.89) 
85+  0.32 

(0.13-0.50) 
0.31 

(0.13-0.49) 
a Mean of Monte Carlo generated distribution; 95% confidence interval presented in parentheses. 

G.6 Cost-Effectiveness Analysis 

Given the estimates of changes in life expectancy and quality of life, the next step is to aggregate 
life expectancy and quality-of-life gains to form an effectiveness measure that can be compared 
to costs to develop cost-effectiveness ratios.  This section discusses the proper characterization of 
the combined effectiveness measure and the appropriate calculation of the numerator of the cost-
effectiveness ratio. 

G.6.1 Aggregating Life Expectancy and Quality-of-Life Gains 

To develop an integrated measure of changes in health, we simply sum together the gains in life 
years from reduced mortality risk in each age interval with the gains in QALYs from reductions 
in incidence of CB and acute myocardial infarctions.  The resulting measure of effectiveness 
then forms the denominator in the cost-effectiveness ratio.  What is this combined measure of 
effectiveness?  It is not a QALY measure in a strict sense, because we have not adjusted life-
expectancy gains for preexisting health status (quality of life).  It is however, an effectiveness 
measure that adds to the standard life years calculation a scaled morbidity equivalent.  Thus, we 
term the aggregate measure morbidity inclusive life years, or MILYs.  Alternatively, the 
combined measure could be considered as QALYs with an assumption that the community 
preference weight for all life-expectancy gains is 1.0.  If one considers that this weight might be 
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considered to be a “fair” treatment of those with preexisting disabilities, the effectiveness 
measure might be termed “fair QALY” gained.  However, this implies that all aspects of fairness 
have been addressed, and there are clearly other issues with the fairness of QALYs (or other 
effectiveness measures) that are not addressed in this simple adjustment.  The MILY measure 
violates some of the properties used in deriving QALY weights, such as linear substitution 
between quality of life and quantity of life.  However, in aggregating life expectancy and quality-
of-life gains, it merely represents an alternative social weighting that is consistent with the spirit 
of the recent OMB guidance on CEA.  The guidance notes that “fairness is important in the 
choice and execution of effectiveness measures” (OMB, 2003).  The resulting aggregate measure 
of effectiveness will not be consistent with a strict utility interpretation of QALYs; however, it 
may still be a useful index of effectiveness. 

Applying the life expectancies and distributions of QALYs per incidence for CB and AMI to 
estimated distributions of incidences yields distributions of life expectancy and QALYs gained 
due to the PM NAAQS illustrative attainment strategies.  These distributions reflect both the 
quantified uncertainty in incidence estimates and the quantified uncertainty in QALYs gained per 
incidence. 

For the attainment strategy for the revised 15/35 standards, Table G-11 presents the mean 3 
percent discounted MILYs gained for each age interval, broken out by life expectancy and 
quality-of-life categories.  Note that quality-of-life gains occur from age 18 and up, while life 
expectancy gains accrue only after age 29.  This is based on the ages of the study populations in 
the underlying epidemiological studies.  It is unlikely that such discontinuities exist in reality, but 
to avoid overstating effectiveness, we chose to limit the life-expectancy gains to those occurring 
in the population 30 and over and the morbidity gains to the specific adult populations examined 
in the studies.  Table G-12 provides the same information for the 14/35 attainment strategy. 

It is worth noting that around a third of mortality-related benefits are due to reductions in 
premature deaths among those 75 and older, while only 7 percent of morbidity benefits occur in 
this age group.  This is due to two factors:  (1) the relatively low baseline mortality rates in 
populations under 75, and (2) the relatively constant baseline rates of chronic disease coupled 
with the relatively long period of life that is lived with increased quality of life without CB and 
advanced heart disease. 

The relationship between age and the distribution of MILYs gained from mortality and morbidity 
is shown for the 15/35 attainment strategy in Figure G-2 (the relationship is almost identical for 
the 14/35 attainment strategy).  Because the baseline mortality rate is increasing in age at a much 
faster rate than the prevalence rate for CB, the share of MILYs gained accounted for by mortality 
is proportional to age.  At the oldest age interval, avoiding incidences of CB leads to only a few 
MILYs gained, due to the lower number of years lived with CB.  MILYs gained from avoided 
premature mortality is low in the youngest age intervals because of the low overall mortality 
rates in these intervals, although the number of MILYs per incidence is high.  In later years, even 
though the MILYs gained per incidence avoided is low, the number of cases is very high due to 
higher baseline mortality rates. 
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Table G-11.  Estimated Gains in 3 Percent Discounted MILYs Associated with Illustrative 
Attainment Strategies for the Revised PM NAAQS (15/35) in 2020a 

Age 

Life Years Gained 
from Mortality Risk  

Reductions 
(95% CI) 

QALY Gained from 
Reductions in 

Chronic Bronchitis 
(95% CI) 

QALY Gained from 
Reductions in Acute 

Myocardial Infarctions 
(95% CI) 

Total Gain in  
MILYs 

(95% CI) 
18–24 — — 3 

(0 – 5) 
3 

(0 – 5) 
25–34 580 

(170 – 1,000) 
3,200 

(240 – 7,600) 
15 

(4 – 32) 
3,800 

(810 – 8,200) 
35–44 1,700 

(600 – 2,900) 
3,300 

(260 – 7,700) 
290 

(78 – 600) 
5,300 

(1,900 – 9,900) 
45–54 3,000 

(970 – 5,000) 
2,600 

(210 – 6,000) 
770 

(210 – 1,600) 
6,300 

(3,000 – 10,000) 
55–64 5,800 

(1,900 – 9,800) 
2,000 

(170 – 4,600) 
1,400 

(360 – 3,000) 
9,200 

(4,600 – 14,000) 
65–74 6,800 

(2,200 – 11,000) 
960 

(83 – 2,300) 
1,200 

(320 – 2,600) 
9,000 

(4,100 – 14,000) 
75–84 5,400 

(1,800 – 9,100) 
320 

(28 – 770) 
510 

(140 – 1,000) 
6,200 

(2,600 – 10,000) 
85+ 2,900 

(940 – 4,900) 
56 

(5 – 130) 
150 

(45 – 300) 
3,100 

(1,200 – 5,100) 
Total 26,000 

(18,000 – 34,000) 
12,000 

(1,100 – 29,000) 
4,400 

(1,200 – 9,100) 
43,000 

(28,000 – 62,000) 
a Note that all estimates have been rounded to two significant digits. 

Summing over the age intervals provides estimates of total MILYs gained for the PM NAAQS 
illustrative attainment strategies.  The total number of discounted (3 percent) MILYs gained for 
the 15/35 attainment strategy is 43,000 (95% CI:  28,000 – 62,000) and for the 14/35 attainment 
strategy is 75,000 (95% CI:  48,000 – 110,000). 

G.6.2 Dealing with Acute Health Effects and Nonhealth Effects 

Health effects from exposure to particulate air pollution encompass a wide array of chronic and 
acute conditions in addition to premature mortality (EPA, 1996).  Although chronic conditions 
and premature mortality generally account for the majority of monetized benefits, acute 
symptoms can affect a broad population or sensitive populations (e.g., asthma exacerbations in 
asthmatic children.  In addition, reductions in air pollution may result in a broad set of nonhealth 
environmental benefits, including improved visibility in national parks, increased agricultural 
and forestry yields, reduced acid damage to buildings, and a host of other impacts.  QALYs 
address only health impacts, and the OMB guidance notes that “where regulation may yield 
several different beneficial outcomes, a cost-effectiveness comparison becomes more difficult to 
interpret because there is more than one measure of effectiveness to incorporate in the analysis.” 
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Table G-12: Estimated Gains in 3 Percent Discounted MILYs Associated with Illustrative 
Attainment Strategies for the More Stringent Alternative PM NAAQS (14/35) in 2020a 

Age 

Life Years Gained 
from Mortality Risk  

Reductions 
(95% CI) 

QALY Gained from 
Reductions in 

Chronic Bronchitis 
(95% CI) 

QALY Gained from 
Reductions in Acute 

Myocardial Infarctions 
(95% CI) 

Total Gain in  
MILYs 

(95% CI) 
18–24 — — 8 (2 – 17) 8 (2 – 17) 
25–34 950 

(310 – 1,600) 
5,500 

(390 – 13,000) 
51 

(13 – 100) 
6,500 

(1,300 – 14,000) 
35–44 2,800 

(910 – 4,600) 
5,600 

(310 – 13,000) 
500 

(130 – 1,000) 
8,900 

(3,200 – 17,000) 
45–54 4,900 

(1,600 – 8,300) 
4,400 

(320 – 10,000) 
1,400 

(360 – 2,800) 
11,000 

(5,000 – 18,000) 
55–64 10,000 

(3,200 – 17,000) 
3,600 

(280 – 8,400) 
2,400 

(600 – 5,000) 
16,000 

(8,000 – 25,000) 
65–74 12,000 

(3,800 – 21,000) 
1,800 

(170 – 4,200) 
2,100 

(520 – 4,200) 
16,000 

(7,300 – 25,000) 
75–84 9,600 

(3,200 – 16,000) 
590 

(38 – 1,400) 
960 

(250 -1,900) 
11,000 

(4,600 – 18,000) 
85+ 4,800 

(1,600 – 8,100) 
98 

(7 – 230) 
280 

(80 – 550) 
5,200 

(2,000 – 8,400) 
Total 45,000 

(32,000 – 59,000) 
22,000 

(1,500 – 51,000) 
7,700 

(2,000 – 16,000) 
75,000 

(48,000 – 110,000) 
a Note that all estimates have been rounded to two significant digits. 

 

With regard to acute health impacts, Bala and Zarkin (2000) suggest that QALYs are not 
appropriate for valuing acute symptoms, because of problems with both measuring utility for 
acute health states and applying QALYs in a linear fashion to very short duration health states.  
Johnson and Lievense (2000) suggest using conjoint analysis to get healthy-utility time 
equivalences that can be compared across acute effects, but it is not clear how these can be 
combined with QALYs for chronic effects and loss of life expectancy.  There is also a class of 
effects that EPA has traditionally treated as acute, such as hospital admissions, which may also 
result in a loss of quality of life for a period of time following the effect.  For example, life after 
asthma hospitalization has been estimated with a utility weight of 0.93 (Bell et al., 2001; 
Kerridge, Glasziou, and Hillman, 1995). 

How should these effects be combined with QALYs for chronic and mortality effects?  One 
method would be to convert the acute effects to QALYs; however, as noted above, there are 
problems with the linearity assumption (i.e., if a year with asthma symptoms is equivalent to 0.7 
year without asthma symptoms, then 1 day without asthma symptoms is equivalent to 0.0019 
QALY gained).  This is troubling from both a conceptual basis and a presentation basis.  An 
alternative approach is simply to treat acute health effects like nonhealth benefits and subtract the 
dollar value (based on WTP or COI) from compliance costs in the CEA. 
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Figure G-2. Distribution of Mortality and Morbidity Related MILY Across Age Groups for 

Illustrative Attainment Strategy for the Revised PM NAAQS (3 percent Discount 
Rate) 

To address the issues of incorporating acute morbidity and nonhealth benefits, OMB suggests 
that agencies “subtract the monetary estimate of the ancillary benefits from the gross cost 
estimate to yield an estimated net cost.”  As with benefit-cost analysis, any unquantified benefits 
and/or costs should be noted and an indication of how they might affect the cost-effectiveness 
ratio should be described.  We will follow this recommended “net cost” approach in the 
illustrative exercise, specifically in netting out the benefits of health improvements other than 
reduced mortality and chronic morbidity, and the benefits of improvements in visibility at 
national parks (see Chapter 5 for more details on these benefit categories). 

G.6.3 Cost-Effectiveness Ratios 

Construction of cost-effectiveness ratios requires estimates of effectiveness (in this case 
measured by lives saved, life years gained, or MILYs gained) in the denominator and estimates 
of costs in the numerator.  The estimate of costs in the numerator should include both the direct 
costs of the controls necessary to achieve the reduction in ambient PM2.5 and the avoided costs 
(cost savings) associated with the reductions in morbidity (Gold et al., 1996).  In general, 
because reductions in air pollution do not require direct actions by the affected populations, there 
are no specific costs to affected individuals (aside from the overall increases in prices that might 
be expected to occur as control costs are passed on by affected industries).  Likewise, because 
individuals do not engage in any specific actions to realize the health benefit of the pollution 
reduction, there are no decreases in utility (as might occur from a medical intervention) that need 
to be adjusted for in the denominator.  Thus, the elements of the numerator are direct costs of 
controls minus the avoided COI associated with CB and nonfatal AMI.  In addition, to account 
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for the value of reductions in acute health impacts and nonhealth benefits, we net out the 
monetized value of these benefits from the numerator to yield a “net cost” estimate.  For the 
MILY aggregate effectiveness measure, the denominator is simply the sum of life years gained 
from increased life expectancy and the sum of QALYs gained from the reductions in CB and 
nonfatal AMI. 

Avoided costs for CB and nonfatal AMI are based on estimates of lost earnings and medical 
costs.7  Using age-specific annual lost earnings and medical costs estimated by Cropper and 
Krupnick (1990) and a 3 percent discount rate, we estimated a lifetime present discounted value 
(in 2000$) due to CB of $150,542 for someone between the ages of 27 and 44; $97,610 for 
someone between the ages of 45 and 64; and $11,088 for someone over 65.  The corresponding 
age-specific estimates of lifetime present discounted value (in 2000$) using a 7 percent discount 
rate are $86,026, $72,261, and $9,030, respectively.  These estimates assumed that 1) lost 
earnings continue only until age 65, 2) medical expenditures are incurred until death, and 3) life 
expectancy is unchanged by CB. 

Because the costs associated with a myocardial infarction extend beyond the initial event itself, 
we consider costs incurred over several years.  Using age-specific annual lost earnings estimated 
by Cropper and Krupnick (1990) and a 3 percent discount rate, we estimated a present 
discounted value in lost earnings (in 2000$) over 5 years due to a myocardial infarction of 
$8,774 for someone between the ages of 25 and 44, $12,932 for someone between the ages of 45 
and 54, and $74,746 for someone between the ages of 55 and 65.  The corresponding age-
specific estimates of lost earnings (in 2000$) using a 7 percent discount rate are $7,855, $11,578, 
and $66,920, respectively.  Cropper and Krupnick (1990) do not provide lost earnings estimates 
for populations under 25 or over 65.  Thus, we do not include lost earnings in the cost estimates 
for these age groups. 

Two estimates of the direct medical costs of myocardial infarction are used.  The first estimate is 
from Wittels, Hay, and Gotto (1990), which estimated expected total medical costs of MI over 5 
years to be $51,211 (in 1986$) for people who were admitted to the hospital and survived 
hospitalization (there does not appear to be any discounting used).  Using the CPI-U for medical 
care, the Wittels estimate is $109,474 in year 2000$.  This estimated cost is based on a medical 
cost model, which incorporated therapeutic options, projected outcomes, and prices (using 
“knowledgeable cardiologists” as consultants).  The model used medical data and medical 
decision algorithms to estimate the probabilities of certain events and/or medical procedures 
being used.  The second estimate is from Russell et al. (1998), which estimated first-year direct 
medical costs of treating nonfatal myocardial infarction of $15,540 (in 1995$), and $1,051 
annually thereafter.  Converting to year 2000$, that would be $23,353 for a 5-year period 
(without discounting). 

                                                 
7 Gold et al. (1996) recommend not including lost earnings in the cost-of-illness estimates, suggesting that in some 
cases, they may be already be counted in the effectiveness measures.  However, this requires that individuals fully 
incorporate the value of lost earnings and reduced labor force participation opportunities into their responses to 
time-tradeoff or standard-gamble questions.  For the purposes of this analysis and for consistency with the way 
costs-of-illness are calculated for the benefit-cost analysis, we have assumed that individuals do not incorporate lost 
earnings in responses to these questions.  This assumption can be relaxed in future analyses with improved 
understanding of how lost earnings are treated in preference elicitations. 
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The two estimates from these studies are substantially different, and we have not adequately 
resolved the sources of differences in the estimates.  Because the wage-related opportunity cost 
estimates from Cropper and Krupnick (1990) cover a 5-year period, we used estimates for 
medical costs that similarly cover a 5-year period.  We used a simple average of the two 5-year 
estimates, or $65,902, and add it to the 5-year opportunity cost estimate.  The resulting estimates 
are given in Table G-13. 

Table G-13: Estimated Costs Over a 5-Year Period (in 2000$) of a Nonfatal Myocardial Infarction 

Age Group Opportunity Cost Medical Costa Total Cost 

0 – 24 $0 $65,902 $65,902 
25-44 $8,774b $65,902 $74,676 
45 – 54 $12,253b $65,902 $78,834 
55 – 65 $70,619b $65,902 $140,649 
>65 $0 $65,902 $65,902 

a An average of the 5-year costs estimated by Wittels, Hay, and Gotto (1990) and Russell et al. (1998). 
b From Cropper and Krupnick (1990), using a 3 percent discount rate. 

The total avoided COI by age group associated with the reductions in CB and nonfatal acute 
myocardial infarctions is provided in Table G-14.  Note that the total avoided COI associated 
with the revised PM NAAQS is $520 million and is $1,200 million for the more stringent 
alternative.  Note that this does not include any direct avoided medical costs associated with 
premature mortality.  Nor does it include any medical costs that occur more than 5 years from the 
onset of a nonfatal AMI.  Therefore, this is likely an underestimate of the true avoided COI 
associated with strategies for attainment of the PM NAAQS. 

Table G-14: Avoided Costs of Illness Associated with Reductions in Chronic Bronchitis and 
Nonfatal Acute Myocardial Infarctions Associated with Attainment Strategies for the 
Revised and More Stringent PM NAAQS in 2020 

 Avoided Cost of Illness (in millions of 2000$) 

 Chronic Bronchitis Nonfatal Acute Myocardial Infarction 
Age 

Range 
15/35 Attainment 

Strategy 
14/35 Attainment 

Strategy 
15/35 Attainment 

Strategy 
14/34 Attainment 

Strategy 
18-24 — — $0.1 $0.3 
25-34 $73 $120 $0.6 $1.9 
35-44 $83 $140 $12 $20 
45-54 $48 $84 $40 $71 
55-64 $47 $85 $170 $290 
65-74 $3.6 $6.7 $98 $160 
75-84 $1.8 $3.3 $62 $120 
85+ $0.8 $1.4 $33 $60 
Total $260 $450 $420 $730 
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G.7 Discount Rate Sensitivity Analysis 

A large number of parameters and assumptions are necessary in conducting a CEA.  Where 
appropriate and supported by data, we have included distributions of parameter values that were 
used in generating the reported confidence intervals.  For the assumed discount rate, we felt it 
more appropriate to examine the impact of the assumption using a sensitivity analysis rather than 
through the integrated probabilistic uncertainty analysis. 

The choice of a discount rate, and its associated conceptual basis, is a topic of ongoing 
discussion within the academic community.  OMB and EPA guidance require using both a 7 
percent rate and a 3 percent rate.  In the most recent benefit-cost analyses of air pollution 
regulations, a 3 and 7 percent discount rate have been adopted in the primary analysis.  A 3 
percent discount rate reflects a “social rate of time preference” discounting concept.  A 3 percent 
discount rate is also consistent with the recommendations of the NAS panel on CEA (Gold et al., 
1996), which suggests that “a real annual (riskless) rate of 3 percent should be used in the 
Reference Case analysis.”  We have also calculated MILYs and the implicit cost thresholds using 
a 7 percent rate consistent with an “opportunity cost of capital” concept to reflect the time value 
of resources directed to meet regulatory requirements.  Further discussion of this topic appears in 
Chapter 7 of Gold et al. (1996), in Chapter 6 of the EPA Guidelines for Economic Analysis, and 
in OMB Circular A-4. 

Table G-15: Summary of Results for the Illustrative Attainment Strategies for the Revised and 
More Stringent PM NAAQS in 2020a 

 Result Using 3% Discount Rate (95% Confidence Interval) 

 15/35 Attainment Strategy 14/35 Attainment Strategy 
Life years gained from mortality 
risk reductions 

26,000 
(18,000 – 34,000) 

45,000 
(32,000 – 59,000) 

QALY gained from reductions in 
chronic bronchitis 

12,000 
(1,100 – 29,000) 

22,000 
(1,500 – 51,000) 

QALY gained from reductions in 
acute myocardial infarctions 

4,400 
(1,200 – 9,100) 

7,700 
(2,000 – 16,000) 

Total gain in MILYs 43,000 
(28,000 – 62,000) 

75,000 
(48,000 – 110,000) 

Avoided cost of illness   
Chronic bronchitis $260 million 

($170 million – $410 million) 
$450 million 

($290 million – $700 million) 
Nonfatal AMI $420 million 

($230 million – $680 million) 
$730 million 

($400 million – $1,200 million) 
Implementation strategy costsb $5.4 billion $7.0 billion 
Net cost per MILY $97,000 

($66,000 – $150,000) 
$63,000 

($37,000 – $85,000) 
a Consistent with recommendations of Gold et al. (1996), all summary results are reported at a precision level of 

two significant digits to reflect limits in the precision of the underlying elements. 
b Costs are the private firm costs of control, as discussed in Chapter 6, and reflect discounting using firm 

specific costs of capital. 
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Table G-16 presents a summary of results using the 7 percent discount rate and the percentage 
difference between the 7 percent results and the base case 3 percent results.  Adoption of a 7 
percent discount rate decreases the estimated life years and QALYs gained from implementing 
the PM NAAQS.  Adopting a discount rate of 7 percent results in a 35 percent reduction in the 
estimated total MILYs gained in each year, while the cost per MILY increases by approximately 
60 percent. 

Table G-16: Impacts of Using a 7 Percent Discount Rate on Cost Effectiveness Analysis for the 
Illustrative Attainment Strategies for the Revised and More Stringent PM NAAQS in 
2020 

Result Using 7 Percent Discount 
Rate 

Percentage Change Relative to Result 
Using 3 Percent Discount Rate 

 
15/35 Attainment 

Strategy 
14/35 Attainment 

Strategy 
15/35 Attainment 

Strategy 
14/35 Attainment 

Strategy 
Life years gained from 
mortality risk 
reductions 

16,000 29,000 –38% –35% 

QALY gained from 
reductions in chronic 
bronchitis 

8,100 14,000 –32% –36% 

QALY gained from 
reductions in acute 
myocardial infarctions 

3,500 6,000 –20% –22% 

Total gain in MILYs 28,000 49,000 –35% –35% 
Avoided cost of illness     

Chronic bronchitis $170 million $290 million –35% –35% 
Nonfatal AMI $410 million $710 million –3% –3% 

Net cost per MILY $160,000 $100,000 +65% +59% 
 

G.8 Conclusions 

We calculated the effectiveness of PM NAAQS attainment strategies based on reductions in 
premature deaths and incidence of chronic disease.  We measured effectiveness using several 
different metrics, including lives saved, life years saved, and QALYs (for improvements in 
quality of life due to reductions in incidence of chronic disease).  We suggested a new metric for 
aggregating life years saved and improvements in quality of life, morbidity inclusive life years 
(MILY) which assumes that society assigns a weight of one to years of life extended regardless 
of preexisting disabilities or chronic health conditions. 

CEA of environmental regulations that have substantial public health impacts may be 
informative in identifying programs that have achieved cost-effective reductions in health 
impacts and can suggest areas where additional controls may be justified.  However, the overall 
efficiency of a regulatory action can only be judged through a complete benefit-cost analysis that 
takes into account all benefits and costs, including both health and nonhealth effects.  The 
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benefit-cost analysis for the PM NAAQS attainment strategies, provided in Chapter 9, shows that 
the attainment strategies we modeled have potentially large net benefits, indicating that 
implementation of the revised PM NAAQS will likely result in improvements in overall public 
welfare. 
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